A geotermikus energia egy olyan megújuló energiaforrás, amely ma még kevésbé ismert. Keletkezési helyét Földünk forrón izzó belső rétegeiben kell keresni. Az ott képződött – radioaktív bomlás útján felszabadult – hő a jóval alacsonyabb hőmérsékletű felszín felé áramlik. A hőenergia azonban a földfelszínt elérve sem vész el, ugyanis onnan átadódik a légkörnek. Ez a jelenség a földi hőáram. Tulajdonképpen e komplex folyamatból képződik a Föld saját belső energiájaként is értelmezhető geotermikus energia, amely – mivel a Földünk belsejéből sugárzó hő gyakorlatilag állandó – folyamatosan megújul.

Geotermikus energia Magyarországon

Hazánk geotermikus helyzetképe rendkívül jó adottságokat mutat, ugyanis földrajzilag olyan területen fekszik, ahol a magas hőmérsékletű közegek viszonylag sűrűn és a felszínhez közel helyezkednek el. Erre a Kárpát-medence kiemelkedő adottságai adhatnak magyarázatot: a területen a litoszféra (a földkéreg és a földköpeny felső, szilárd része) elvékonyodott, ennek hatására a mélyebben fekvő asztenoszféra forró részei közelebb kerültek a felszínhez. A jelenség következtében a földköpeny vastagsága 22-26 kilométerre csökkent (a Föld átlagos köpenyvastagsága 30-40 kilométer). Magyarország geotermikus viszonyainak pontosabb, tudományos ismertetését segíti a geotermikus gradiens és a földi hőáram fogalma.

A geotermikus energia felméréséhez a geotermikus gradiens biztosítja az egyik legpontosabb helyzetképet. Ez az érték megmutatja, hogy a Föld középpontja felé haladva egységnyi távon mennyit emelkedik a hőmérséklet (mértékegysége: °C/km). Európában az átlagos geotermikus gradiens eléri a 30-33 °C/km-t. Ugyanez az érték Magyarországon 42-45 °C/km az átlagos érték.

A függőleges elrendezésű talajkollektor (földszonda) mélysége a talajfelszíntől mérve általában 100-150 m és a teljesítménytől függ a darabszáma. Kedvező lehet adott esetekben a sokkal rövidebb szonda is.
Geotermikus fűtés

Hazánk geotermikus helyzetképe rendkívül jó adottságokat mutat, ugyanis földrajzilag olyan területen fekszik, ahol a magas hőmérsékletű közegek viszonylag sűrűn és a felszínhez közel helyezkednek el. Erre a Kárpát-medence kiemelkedő adottságai adhatnak magyarázatot: a területen a litoszféra (a földkéreg és a földköpeny felső, szilárd része) elvékonyodott, ennek hatására a mélyebben fekvő asztenoszféra forró részei közelebb kerültek a felszínhez. A jelenség következtében a földköpeny vastagsága 22-26 kilométerre csökkent (a Föld átlagos köpenyvastagsága 30-40 kilométer). Magyarország geotermikus viszonyainak pontosabb, tudományos ismertetését segíti a geotermikus gradiens és a földi hőáram fogalma.

A geotermikus energia felméréséhez a geotermikus gradiens biztosítja az egyik legpontosabb helyzetképet. Ez az érték megmutatja, hogy a Föld középpontja felé haladva egységnyi távon mennyit emelkedik a hőmérséklet (mértékegysége: °C/km). Európában az átlagos geotermikus gradiens eléri a 30-33 °C/km-t. Ugyanez az érték Magyarországon 42-45 °C/km az átlagos érték.

A függőleges elrendezésű talajkollektor (földszonda) mélysége a talajfelszíntől mérve általában 100-150 m és a teljesítménytől függ a darabszáma. Kedvező lehet adott esetekben a sokkal rövidebb szonda is.

A hőszivattyúk működési elve

A hőszivattyú működősének alapelve igen egyszerű. Tulajdonképpen már évtizedek óta használjuk háztartásainkban, méghozzá a hűtőszekrények révén. Működésük lényege ugyanis azonos. A hűtőközeg elpárolgása és kondenzálódása révén a hűtőszekrény belsejéből (hidegebb zóna) hőt von el és azt a hűtőszekrény környezetében (melegebb zóna) adja le. Vagyis a hidegebb helyről hőt szállít a melegebb helyre.

A hőszivattyúkat éppen ezért gyakran emlegetik „kifordított hűtőszekrénynek”, ami kívül hűt, belül fűt. A működési elv az ún. Carnotféle termodinamikai körfolyamatnak köszönhető, amely összesen négy, szabályosan ismétlődő és megfordítható (reverzibilis) állapotváltozásból áll, azaz két hőcserélőből, egy kompresszorból és egy fojtó (expanziós) szelepből. Ezeket csővezetékek kötik össze, melyekben a hűtőközeg kering.